Unit 10: Other non-linear functions

Name: Key

Investigate these equations for exponential growth and decay.

(Use your graphing calculator)

1. Given $y = 3^x$, evaluate y when x = 3.

Choose:

f $5 y = 3^3$ $5 y = 3^7$

- C 3 C 9 C 27
- **2.** Given $y = 3^x$, evaluate y when x = -2.

Choose:

y=3°

- -9 -1/9 1/9
- **3.** Would the graph of $y = 0.5^x$ show exponential growth or exponential decay?

Choose:

02621 02621

growth decay

4. Would the graph of $y = 1.5^{\text{x}}$ show exponential growth or exponential decay?

Choose:

decay

50 1.5>1 So growth

b>1:9rows

6. Which ordered pair represents the y-intercept Choose: for the function $y = 2^x$? (0,0)

y = 2 not table

(0,0)

7. The graph of $y = 2^x$ lies in which Quadrants?

In calc y= graph

C I, II
C I, III

Choose:

8. The graph of $y = 2^x$ contains which of these points?

y=
2rd table

(0,0)

Choose:

- **9.** Which graph below depicts $y = 3^x + 2$?

Choose:

a

C

d

A piece of paper is folded in half so that there are two 10. thicknesses (or layers) of paper. These new layers are folded in half again to form 4 layers. If this folding continues, which equation will best represent the number of layers of paper (y), in terms of the number of folds (x), where *x* is a whole number?

double

Choose:

$$y = 2^x$$

$$y = 3^x$$

$$y = 4^x$$

An important characteristic of exponential decay is the time 11. required for the decaying quantity to fall to one half of its initial value. This time is called the half-life. A radioactive substance decays exponentially with a half-life of 500 years. After 1,500 years, what percent of the radioactive material remains?

Choose:

- 30%
- 15%

12.5%

 $=(0.5)^3$ $=(0.5)^3$