Graphing Quadratic Functions

Example \#1

Interpret the following situation.

Jan threw a ball straight up into the air. The graph to the right represents the height (h) of the ball at time (t).
a) When is the ball on the ground?
b) What is the maximum height of the ball?
c) When is the ball at its highest?
d) When is the height of the ball 4 feet?
e) Approximate the height of the ball at 5 seconds.
f) Is the graph a function? If it is a function, find the
 domain and the range.

Example \#2

A rocket is launched from ground level with an initial velocity of $224 \mathrm{ft} / \mathrm{s}$. The height h in feet of the rocket at any given time t in seconds is $h(t)=224 t-16 t^{2}$.
a) When will the rocket reach a height of 528 feet?
b) When will the rocket reach the ground?
c) When will the rocket reach its maximum height?
d) What is the maximum height of the rocket?
e) Graph this situation.
f) State the domain and range of the graph.

1. An object is hurled upward from the ground at an initial velocity of $128 \mathrm{ft} / \mathrm{s}$. The height h in feet of the object at any given time t in seconds is $h(t)=128 t-16 t^{2}$.
a) When will the object reach a height of 192 feet?
b) When will the object reach the ground?
c) When will the object reach its maximum height?
d) What is the maximum height of the object?
e) Graph this situation.
f) State the domain and the range of the graph.

2. From ground level, an object travels upward with an initial velocity of $240 \mathrm{ft} / \mathrm{s}$. The height h in feet of the object at any given time t in seconds is $h(t)=240 t-16 t^{2}$.
a) Find $h(1)$. Explain the meaning of this question in the context of this problem.
b) Find the value of t when $h(t)=800$. Explain the meaning of this question in the context of this problem.
c) Find the value of t when $h(t)=0$. Explain the meaning of this question in the context of this problem.
d) When will the object reach its maximum height?
e) What is the maximum height of the object?

f) Graph this situation.
g) State the domain and the range of the graph.
