(7-3)

Multiplication Properties of Exponents

1. The expression $(x \cdot x \cdot x) \cdot (x \cdot x)$ can be evaluated two ways. As a product of two powers, it can be written as $x^3 \cdot x^2$. As a single power, it can be written as x^5 . Use this information to complete the table below.

Expression	Product of Powers	Single Power
$(x \cdot x \cdot x) \cdot (x \cdot x)$	$\chi^3 \cdot \chi^2$	<i>x</i> ⁵
$(y \cdot y \cdot y \cdot y) \cdot (y \cdot y)$	$y^4 \cdot y^2$	y ⁶
$(a \cdot a \cdot a \cdot a \cdot a) \cdot (a \cdot a \cdot a \cdot a)$	a ⁵ · a ⁴	a ⁹
$m \cdot (m \cdot m \cdot m \cdot m \cdot m)$	$m^{1} \cdot m^{5}$	m ⁶

- 2. Describe any patterns you see in the table above.
- 3. Use a similar method to complete the table below.

	Product of	
Expression	Powers	Power
$(y \cdot y \cdot y) \cdot (y \cdot y) \cdot (y \cdot y)$	$y^3 \cdot y^2 \cdot y^2$	<i>y'</i>
$(b \cdot b \cdot b) \cdot (b \cdot b) \cdot (b \cdot b \cdot b \cdot b)$	$b^3 \cdot b^2 \cdot b^4$	<i>b</i> ⁹
$(z \cdot z) \cdot (z \cdot z \cdot z) \cdot (z \cdot z \cdot z \cdot z \cdot z)$	$z^2 \cdot z^3 \cdot z^5$	Z ¹⁰
$x \cdot (x \cdot x) \cdot (x \cdot x \cdot x) \cdot (x \cdot x)$	$\chi^1 \cdot \chi^2 \cdot \chi^3 \cdot \chi^2$	X ⁸

THINK AND DISCUSS

- 4. Describe any patterns you see in the second table.
- **5. Explain** how you can use your findings to write $x^{10} \cdot x^4$ as a single power.
- 2. The exponent in the right column is the sum of the exponents in the left column.
- 4. The pattern is the same.
- 5. Add the exponents: $x^{10} \cdot x^4 = x^{14}$.