Linear Contour LC4	
Solving Linear Systems by Substitution	Name Key
Classwork - Day 2	DatePeriod
Kate asked Betty about the cost of boarding and grooming dogs at Doggy Hotel. Betty's receipt did not show the individual prices for boarding and grooming, but one receipt showed a total of \$70 for one grooming and 5 days of boarding. Another receipt showed a total of \$164 for two groomings and 12 days of boarding. Together they wrote this system of equations to find the individual costs of boarding and grooming.	
$\begin{cases} g + 5b \\ 2g + 12 \end{cases}$	$= 70 \rightarrow 9 = (-5b + 70)$ $2b = 164$
1. How is the system $\begin{cases} g + 5b = 70 \\ 2g + 12b = 164 \end{cases}$ different from	m the systems of equations we solved yesterday?
Both equations are in	Standard Form
2. Which equation should be changed so the system of equation in the form needed for substitution. 3. Solve the system using substitution. Verify that y 29 + /2b = 164 DIST 2(-56+70) + 12b = 164 Cur -10b +140 + 12b = 164 25+148 = 164 4. In this situation, what does your solution represent the represents that it costs \$1/2 per day for boarding or	the easiest $g = -5b + 70$ your solution is correct. $g = -5b + 70$ b = 12 $g = -5b + 70$ $g = -5(i2) + 70$ $g = 10$
Steps for solving by substitution:	s to 1501ate one of the variables.
2. Substitute this expression into	to the Cherence equation.
3. Solve the equation to get the	value of the first <u>Variable</u>
4. Substitue that value into extension of the other variable.	
5. Write the solution as an Order	ol pair (X,Y)

6.

the solution.

bnewark Linear Systems LS4

Solve the system of equations using substitution.

5.
$$\begin{cases} 4x + y = 0 & y = (-4)x \\ x + y = -3 \end{cases}$$

$$X + (-4x) = -3$$

$$X = -3$$

$$X = -3$$

$$X = -4 (+1)$$

$$Y = -4 (+1)$$

6.
$$\begin{cases} x+2y=3 \\ 2x+4y=6 \end{cases}$$
 X= $\begin{cases} 2(2y+3) \\ +4y=6 \end{cases}$ 2 \left(2y+3) +4y=6 \\
-14y+6 \\
-14y+6 \\
1 \text{Thintely} \\
\text{many} \\
\text{Solutions}

7.
$$\begin{cases} 3x = 11 + y & 9 = (3x - 11) \\ 7x - 5y = -11 & 9 = (3x - 11) \end{cases}$$

$$7x - 5(3x - 11) = -11$$

$$7x - 15x + 55 = -11$$

$$-8x + 55$$

8.
$$\begin{cases} 3x + y = 4 \\ -3x = y - 7 \end{cases} y = (-3x + 7)$$

$$3x + (-3x + 7) = 4$$

$$7 \neq 4$$

$$1 \text{ No Souther}$$